TheBloke/OpenOrca-Platypus2-13B-GGUF

OpenOrca Platypus2 13B - GGUF

Description

This repo contains GGUF format model files for Open-Orca’s OpenOrca Platypus2 13B.

About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.

Here are a list of clients and libraries that are known to support GGUF:

  • llama.cpp.
  • text-generation-webui, the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
  • KoboldCpp, now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
  • LM Studio, version 0.2.2 and later support GGUF. A fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
  • LoLLMS Web UI, should now work, choose the c_transformers backend. A great web UI with many interesting features. Supports CUDA GPU acceleration.
  • ctransformers, now supports GGUF as of version 0.2.24! A Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
  • llama-cpp-python, supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
  • candle, added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.

Repositories available

Prompt template: Alpaca-InstructOnly

### Instruction:

{prompt}

### Response:

Compatibility

These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit 6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9

They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.

Explanation of quantisation methods

Click to see details

Provided files

Name Quant method Bits Size Max RAM required Use case
openorca-platypus2-13b.Q2_K.gguf Q2_K 2 5.43 GB 7.93 GB smallest, significant quality loss - not recommended for most purposes
openorca-platypus2-13b.Q3_K_S.gguf Q3_K_S 3 5.66 GB 8.16 GB very small, high quality loss
openorca-platypus2-13b.Q3_K_M.gguf Q3_K_M 3 6.34 GB 8.84 GB very small, high quality loss
openorca-platypus2-13b.Q3_K_L.gguf Q3_K_L 3 6.93 GB 9.43 GB small, substantial quality loss
openorca-platypus2-13b.Q4_0.gguf Q4_0 4 7.37 GB 9.87 GB legacy; small, very high quality loss - prefer using Q3_K_M
openorca-platypus2-13b.Q4_K_S.gguf Q4_K_S 4 7.41 GB 9.91 GB small, greater quality loss
openorca-platypus2-13b.Q4_K_M.gguf Q4_K_M 4 7.87 GB 10.37 GB medium, balanced quality - recommended
openorca-platypus2-13b.Q5_0.gguf Q5_0 5 8.97 GB 11.47 GB legacy; medium, balanced quality - prefer using Q4_K_M
openorca-platypus2-13b.Q5_K_S.gguf Q5_K_S 5 8.97 GB 11.47 GB large, low quality loss - recommended
openorca-platypus2-13b.Q5_K_M.gguf Q5_K_M 5 9.23 GB 11.73 GB large, very low quality loss - recommended
openorca-platypus2-13b.Q6_K.gguf Q6_K 6 10.68 GB 13.18 GB very large, extremely low quality loss
openorca-platypus2-13b.Q8_0.gguf Q8_0 8 13.83 GB 16.33 GB very large, extremely low quality loss - not recommended

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

Example llama.cpp command

Make sure you are using llama.cpp from commit 6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9 or later.

For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven’t yet updated for GGUF, please use GGML files instead.

./main -t 10 -ngl 32 -m openorca-platypus2-13b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction:\n\nWrite a story about llamas\n\n### Response:"

Change -t 10 to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8. If offloading all layers to GPU, set -t 1.

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don’t have GPU acceleration.

Change -c 4096 to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp.md.

How to run from Python code

You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries.

How to load this model from Python using ctransformers

First install the package

# Base ctransformers with no GPU acceleration
pip install ctransformers>=0.2.24
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]>=0.2.24
# Or with ROCm GPU acceleration
CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems
CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers

Simple example code to load one of these GGUF models

from ctransformers import AutoModelForCausalLM

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/OpenOrca-Platypus2-13B-GGUF", model_file="openorca-platypus2-13b.q4_K_M.gguf", model_type="llama", gpu_layers=50)

print(llm("AI is going to"))

How to use with LangChain

Here’s guides on using llama-cpp-python or ctransformers with LangChain:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI’s Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I’ve had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you’re able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap’n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Open-Orca’s OpenOrca Platypus2 13B

:whale2: The First OrcaPlatypus! :whale2:

Platty

OpenOrca-Platypus2-13B

OpenOrca-Platypus2-13B is a merge of garage-bAInd/Platypus2-13B and Open-Orca/OpenOrcaxOpenChat-Preview2-13B.

This model is more than the sum of its parts! We are happy to be teaming up with the Platypus team to bring you a new model which once again tops the leaderboards!

Want to visualize our full (pre-filtering) dataset? Check out our Nomic Atlas Map.

Atlas Nomic Dataset Map

We are in-process with training more models, so keep a look out on our org for releases coming soon with exciting partners.

We will also give sneak-peak announcements on our Discord, which you can find here:

https://AlignmentLab.ai

Evaluation

HuggingFace Leaderboard Performance

HF Leaderboard

Metric Value
MMLU (5-shot) 59.5
ARC (25-shot) 62.88
HellaSwag (10-shot) 83.19
TruthfulQA (0-shot) 52.69
Avg. 64.56

We use Language Model Evaluation Harness to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.

Please see below for detailed instructions on reproducing benchmark results.

AGIEval Performance

We compare our results to our base Preview2 model (using LM Evaluation Harness).

We find 112% of the base model’s performance on AGI Eval, averaging 0.463. A large part of this boost is the substantial improvement to LSAT Logical Reasoning performance.

OpenOrca-Platypus2-13B AGIEval Performance

BigBench-Hard Performance

We compare our results to our base Preview2 model (using LM Evaluation Harness).

We find 105% of the base model’s performance on BigBench-Hard, averaging 0.442.

OpenOrca-Platypus2-13B BigBench-Hard Performance

Model Details

  • Trained by: Platypus2-13B trained by Cole Hunter & Ariel Lee; OpenOrcaxOpenChat-Preview2-13B trained by Open-Orca
  • Model type: OpenOrca-Platypus2-13B is an auto-regressive language model based on the Lllama 2 transformer architecture.
  • Language(s): English
  • License for Platypus2-13B base weights: Non-Commercial Creative Commons license (CC BY-NC-4.0)
  • License for OpenOrcaxOpenChat-Preview2-13B base weights: Llama 2 Commercial

Prompting

Prompt Template for base Platypus2-13B

### Instruction:

<prompt> (without the <>)

### Response:

Prompt Template for base OpenOrcaxOpenChat-Preview2-13B

OpenChat Llama2 V1: see OpenOrcaxOpenChat-Preview2-13B for additional information.

Training

Training Datasets

garage-bAInd/Platypus2-13B trained using STEM and logic based dataset garage-bAInd/Open-Platypus.

Please see our paper and project webpage for additional information.

Open-Orca/OpenOrcaxOpenChat-Preview2-13B trained using a refined subset of most of the GPT-4 data from the OpenOrca dataset.

Training Procedure

Open-Orca/Platypus2-13B was instruction fine-tuned using LoRA on 1x A100-80GB. For training details and inference instructions please see the Platypus GitHub repo.

Supplemental

Reproducing Evaluation Results (for HuggingFace Leaderboard Eval)

Install LM Evaluation Harness:

# clone repository
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
# change to repo directory
cd lm-evaluation-harness
# check out the correct commit
git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
# install
pip install -e .

Each task was evaluated on a single A100-80GB GPU.

ARC:

python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/arc_challenge_25shot.json --device cuda --num_fewshot 25

HellaSwag:

python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/hellaswag_10shot.json --device cuda --num_fewshot 10

MMLU:

python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/mmlu_5shot.json --device cuda --num_fewshot 5

TruthfulQA:

python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/truthfulqa_0shot.json --device cuda

Limitations and bias

Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.

Please see the Responsible Use Guide available at Llama 2 - Responsible Use Guide - Meta AI

Citations

@software{hunterlee2023orcaplaty1
  title = {OpenOrcaPlatypus: Llama2-13B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset and Merged with divergent STEM and Logic Dataset Model},
  author = {Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz and Bleys Goodson and Wing Lian and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
  year = {2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B},
}
@article{platypus2023,
    title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs},
    author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
    booktitle={arXiv preprint arxiv:2308.07317},
    year={2023}
}
@software{OpenOrcaxOpenChatPreview2,
  title = {OpenOrcaxOpenChatPreview2: Llama2-13B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset},
  author = {Guan Wang and Bleys Goodson and Wing Lian and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
  year = {2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B},
}
@software{openchat,
  title = {{OpenChat: Advancing Open-source Language Models with Imperfect Data}},
  author = {Wang, Guan and Cheng, Sijie and Yu, Qiying and Liu, Changling},
  doi = {10.5281/zenodo.8105775},
  url = {https://github.com/imoneoi/openchat},
  version = {pre-release},
  year = {2023},
  month = {7},
}
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{touvron2023llama,
    title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
    author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
    year={2023},
    eprint= arXiv 2307.09288
}
@misc{longpre2023flan,
      title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
      author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
      year={2023},
      eprint={2301.13688},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
@article{hu2021lora,
  title={LoRA: Low-Rank Adaptation of Large Language Models},
  author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu},
  journal={CoRR},
  year={2021}
}
1 Like